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ABSTRACT

Fault tolerance is a key obstacle to next generation extreme-
scale systems. As systems scale, the Mean Time To Inter-
rupt (MTTI) decreases proportionally. As a result, extreme-
scale systems are likely to experience higher rates of fail-
ure in the future. To mitigate this, significant research has
focused on developing and validating fault tolerance tech-
niques. However, evaluating techniques for withstanding
hardware failures at large scale is challenging because repli-
cating those failures on small-scale testbeds is difficult. In
this paper, we propose a virtualization-based framework for
creating testbeds with unreliable virtual hardware. Our pro-
posed approach allows for comprehensive evaluation of fault
tolerance techniques in a broad range of failure regimes. Al-
though there are many other approaches for mimicking unre-
liable hardware, none of them offer the breadth, scalability,
and performance that a virtualization-based solution does.

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability—fault-tolerance;
D.2.5 [Software Engineering]: Testing and Debugging—
error handling and recovery, testing tools

Keywords

fault-tolerance; resilience; virtualization; high-performance
computing

1. INTRODUCTION
Fault tolerance is a key obstacle to next generation extreme-

scale systems. As we build larger and more powerful sys-
tems, socket counts continue to grow. The most powerful
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HPC systems today contain tens of thousands of proces-
sor sockets [18]. Current predictions suggest that the first
exascale system will require nearly an order of magnitude
more sockets [2]. Because system Mean Time To Interrupt
(MTTI) is inversely proportional to socket count [26], we
expect future systems to encounter failures more frequently
than current systems do. As a result, fault tolerance and
resilience in large-scale systems has been an important and
increasingly active area of research.

Error injection techniques are an increasingly important
tool for evaluating techniques for improving the fault toler-
ance of large scale systems. These techniques are necessary
because while large-scale systems fail frequently failures are
rare in the smaller systems that are commonly available for
research. Current error injection techniques are limited in
their breadth, performance, and scalability. In particular,
no error injection framework supports the broad range of
devices and failure modes that may occur, including failures
in memory, processor logic, disks and network interfaces. In
addition, many error injection techniques have performance
costs that preclude their use in long-running applications or
on large-scale systems.

In this paper, we propose a virtualization-based frame-
work for injecting hardware errors to evaluate the effective-
ness of fault tolerance strategies for extreme-scale systems.
Virtual machine monitors (VMMs) designed for HPC sys-
tems (e.g., Palacios [19]) allows us to inject errors across
an entire system with minimal performance costs. In addi-
tion, because virtualization enables fine-grained control the
hardware visible to a guest, it can inject a broad range of
hardware errors from the virtual machine monitor (VMM).
Overall, virtualization provides a platform that enables us to
inject errors with the breadth, performance and scalability
required.

In the remainder of this paper, we describe the demands of
error injection for large-scale systems and outline our pro-
posed framework for meeting these demands. To demon-
strate the viability of this approach, we present two exam-
ples using our proposed framework to mimic unreliable hard-
ware. In addition, we discuss potential directions of future
research that build upon this framework.

2. MOTIVATION
Platforms for evaluating fault tolerance in extreme-scale

systems need to be able to accurately mimic real hardware
errors. Although small-scale tests and microbenchmarks
play an important role, comprehensive evaluation requires
techniques that: mimic the full spectrum of hardware er-
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rors, present errors across multiple nodes, and operate with
low overhead. Unlike other approaches, virtualization allows
us to fully address all three of these criteria.

2.1 Breadth
Memory [16, 27], processor logic [8], network interfaces [21]

and disks [26] have all been recognized as important sources
of hardware errors in large-scale systems. Comprehensive
evaluation platforms must be able to mimic errors in any of
these components. Moreover, they must also support error
injection across an entire component. For example, consid-
erable effort has been expended evaluating the effect of silent
errors in applications [5, 21, 8]. However, these approaches
are targeted at application memory and are not easily ex-
tended to evaluate approaches for recovering from detected
errors [3] or errors in kernel memory [10].

One of the most common causes of node failure is DRAM
errors [27]. The prevailing strategy for handling these fail-
ures is coordinated checkpoint/restart. However, as socket
counts increase this technique may no longer be adequate
[11]. Additionally, recent evidence suggests that errors may
occur more often in kernel memory than in user memory [16].
As a result, developing and evaluating alternative fault tol-
erance strategies for memory errors that occur outside of the
application or that are detected by hardware is critically im-
portant.

Because virtualization precisely controls the hardware vis-
ible to the guest, it offers an ideal platform for mimicking
the full range of hardware errors. For example, in the con-
text of memory errors, virtualization enables us to mimic
silent data corruption as well as detected memory errors
(e.g., DRAM ECC errors) and errors in both application
and kernel memory.

2.2 Scalability
The next generation of extreme-scale systems will expose

an enormous amount of concurrency. The first exascale sys-
tem may be composed of hundreds of thousands of nodes [2].
Effective evaluation of fault tolerance strategies targeted for
such an environment requires a platform that can mimic
hardware errors throughout the system. VMMs designed
for large-scale systems (e.g., Palacios) allow virtualization
to be deployed throughout an entire HPC system with very
low overhead [19]. In addition, they are being used to em-
ulate next-generation large-scale systems [4]. As a result, a
virtualization-based approach can readily mimic hardware
failure regimes in which errors occur not just on a single
node but throughout the entire system.

2.3 Performance
Workloads on extreme-scale systems will frequently run

for days or weeks. Fault tolerance strategies need to be eval-
uated over the entire lifetime of a realistic job. As a result,
any infrastructure for mimicking hardware errors must min-
imize the runtime overhead it imposes on the application.
The Palacios VMM has been shown to allow near-native
performance (less than 5% overhead with nested paging) in
HPC systems [19]. Virtualization can, therefore, allow us
to examine fault tolerance techniques over the lifetime of
realistic workloads.

3. FRAMEWORK

3.1 Basic Framework
To facilitate comprehensive evaluation of fault tolerance

techniques, we propose a virtualization framework for mim-
icking a broad range of unreliable hardware environments.
Our framework is composed of three types of components:
a Front End, an Error Scheduler, and Error Injectors.

1. Front End

The Front End provides a simple interface to allows
users to describe the errors that they wish to inject.
In addition to specifying simple, deterministic hard-
ware errors, this interface allows the user to describe
stochastic processes that allow for non-determinism
spatially, temporally and behaviorally.

2. Error Scheduler

The Error Scheduler sits between the Front End and
the Error Injectors and is responsible for managing the
Error Injectors. In particular, it schedules errors to be
injected as specified by the user through the Front End.

3. Error Injectors

The low-level interface between our framework and the
VMM are low-level Error Injectors that handle partic-
ular types of errors in a specific VMM. Our framework
could be ported to another VMM by rewriting the Er-
ror Injectors to work with the target VMM.

Error Injection Framework

Error
Model

Front
End

User VM

IDE Read 
Error

Injector

Memory 
Scrubber

Error
Injector

Error
Scheduler

Figure 1: The high-level architecture of our Error

Injection Framework

3.2 Error Scheduling
Accurately mimicking system-wide errors requires the abil-

ity to precisely control the manner in which errors occur.
Support for simple, deterministic errors (i.e., single-event
upsets) allows us to support methodical approaches for ex-
ploring system sensitivity to errors (e.g., [21]). However, we
believe more complex stochastic models are also important.
For example, the occurrence of memory errors is commonly
modeled as an exponential process. But recent evidence sug-
gests that this is a poor model for the failures that we see
in the field [16]. By supporting complex stochastic models,
our framework can help develop and validate more accurate
models of memory errors that may in turn enable more ef-
fective resilience techniques.

Our design supports models that describe error regimes
spatially, temporally and/or behaviorally. Spatial models
describe how errors occur within a given hardware device.
The canonical example is specifying the address at which a
memory error will occur. Temporal models describe when
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errors occur. Behavioral models describe when and where
errors occur based on system behavior. For example, mem-
ory scrubbers have little impact on the rate at which memory
errors are encountered [16]. This suggests that memory fail-
ures are dependent on access patterns. A model that allows
error occurrences to be defined in terms of memory access
patterns (e.g., number of writes to a particular location) may
be useful for more accurately modeling real memory errors.

3.3 Error Injection
There are a large number of errors that are potentially

interesting in the context of system resilience and fault tol-
erance. We describe a number of these types of errors below.

3.3.1 Memory Scrubber Errors

Memory faults are one of the most commonly observed
faults in distributed systems [24]. Therefore, the first Error
Injector that we implemented injects a Memory Scrubber
DRAM ECC error at a user-specified guest physical address.

To generate an error, the Memory Scrubber Error Injector
uses a physical address supplied by the user to populate the
processor’s machine check registers. The contents of these
registers inform the guest of the nature of the virtualized
exception that has occurred. The Error Injector then injects
an asynchronous Machine Check Exception (MCE) into the
guest. From the guest’s perspective this sequence mimics
what would happen if a memory scrubber encountered an
uncorrectable memory error.

This discussion raises a potential challenge presented by
virtualization. By using this Error Injector we can easily
define errors that mimic failing memory anywhere in the
guest’s physical memory. However, there exists a semantic
gap between a VMM and its guests: the VMM sees undif-
ferentiated physical memory. Using well-established intro-
spection techniques [12] allow us to bridge this gap.

3.3.2 Synchronous DRAM ECC Errors

DRAM errors account for a significant fraction of node
failures [24]. Frequently, these failures are a result of er-
rors that exceed the ability of the ECC or chipkill [9] to
correct. When the MMU detects an uncorrectable mem-
ory error, it raise a synchronous Machine Check Exception.
Currently, Linux makes some effort to avoid crashing un-
necessarily [17]. But, if the error occurs in memory that is
being used, the kernel kills the applications that reference
the corrupted memory. Strategies for avoiding this outcome
(e.g., [3]), are difficult to fully evaluate without the ability
to cause memory errors to occur.

There is also evidence to suggest that memory errors occur
more frequently in kernel memory than in application mem-
ory [16]. When an error is detected in kernel memory, Linux
reboots the entire node. Based on this evidence, strategies
for hardening kernel data structures against errors are be-
ing explored [10]. However, evaluating the effectiveness of a
hardened kernel is difficult in the absence of an effective way
to induce errors throughout the entire memory footprint.

Because of this empirical evidence on the significance of
memory errors, our Error Injector supports injection of syn-
chronous DRAM errors throughout the entire memory foot-
print, thereby more realistically mimicking memory failures.

3.3.3 IDE Read Errors

Given the relative frailty of mechanical devices, another

common fault is hard disk failure [25]. As a result, we also
implemented a Error Injector that injects an IDE read error
at a user-specified logical block address (LBA). From the
guest’s perspective this appears to be a balky ATA hard
drive.

To inject a fault, the IDE Read Error Injector snoops the
IDE bus to determine when the guest is accessing an LBA at
which an error has been injected. The Error Injector relies
on the fact that each time the guest reads from an IDE
device, it will query a status register to determine whether
the read was successful. Therefore, to virtualize an IDE
Read error, the Error Injector intercepts reads of the status
register. It also intercepts writes to IDE control registers so
that it can maintain internal state about the commands that
have been issued. As a result, it is able to determine whether
the most recent request was a read from a faulty sector when
the guest reads the status register. If it determines that a
error should be injected, it sets a bit in the status register
to indicate that an error occurred.

3.3.4 Additional Errors

Our VMM-based approach supports many other types of
errors, including many of the most frequently studied types
of errors. For example, virtualization-based failure injectors
can mimic errors in processor logic [8], corrupt messages re-
ceived from the network [21], and silent corruption of mem-
ory [5].

4. PRELIMINARY RESULTS
We evaluated our framework qualitatively by examining

the fidelity of virtualized hardware errors as they are expe-
rienced by a guest operating system. This approach is diffi-
cult, however, because we lack a good benchmark for com-
parison and guest operating systems can mask some simple
memory errors. For this same reason, it is difficult to fully
assess whether our framework accurately virtualizes hard-
ware errors.

As a result, we used operating system logs to validate the
operation of our framework. Specifically, we carefully in-
spected the guest’s logs and its kernel’s source code to verify
that the errors that we injected are good approximations of
actual hardware faults. All evaluation of our framework was
conducted using the Palacios virtual machine monitor and
a simple Linux 2.6.37 kernel busybox guest.

4.1 Memory Scrubber errors
As discussed earlier, the semantic gap between our VMM

and our guest makes the isolated evaluation of this error
injector difficult. Linux implements several strategies for
withstanding DRAM ECC errors. For example, if an error
occurs on a clean page in the page cache, Linux can simply
flush the page from the cache and proceed. However, if an
error occurs in a page containing kernel data structures, the
guest will simply crash.

Therefore, to validate the DRAM ECC Error Injector, we
needed to identify a guest physical address such that an er-
ror at the address would elicit observable behavior without
crashing the guest. A crash does not represent meaningful
validation of our Error Injector. To accomplish this goal, we
constructed a simple application (hello world) that mal-

locs a block of memory, displays the (guest) virtual address
of the newly acquired memory, and enters an infinite loop.
We also wrote a small utility program (pagemap) that uses
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/proc/<pid>/pagemap and /proc/kpagefiles. This utility
allows us to translate a virtual address from a process’ ad-
dress space to a guest physical address that can be then
provided to the Error Injector. The output of this utility
provided us with an interesting guest physical address to
use as a target. When an error occurs at this address, Linux
should terminate our hello world application.

We then used the Memory Scrubber Error Injector to in-
ject a error at the target address. Using dmesg from within
the guest enabled us to validate that the guest responded
to this error appropriately. The results are shown in Figure
2. The log shows that the guest detected a Machine Check
Exception and the page on which we injected an error was
in fact dirty. As a result, we see that the guest killed the
hello world process.

Figure 2: The guest’s kernel log after a DRAM ECC

error was injected at 0x19c3000

4.2 IDE read errors
Validating the IDE Read Error Injector presented similar

issues. Again the semantic gap makes it difficult to iden-
tify an LBA that will elicit observable behavior. An LBA
that maps either to an empty section of the disk or to a file
that is never read is not instructive. Using existing files is
problematic because reading from a file that has been read
recently will not result in the desired device access. This
is due to the fact that the requested sectors will be read
from the buffer cache rather from the underlying hardware
device. Therefore, to validate the IDE Read Error Injector,
we began by adding a simple text file to the virtual hard
drive. We can guarantee that this file will not be read from
disk until we have injected our error.

To identify the LBA of a block within this file, we con-
structed a simple utility (blockmap) that uses a FIBMAP ioctl

call on the target file to determine a target LBA. One ad-
ditional complication is that our guest filesystem used 1024
byte blocks but our virtual ATA hard drive has 512 byte
sectors. Thus, the final step to obtaining a target LBA was
to account for this difference.

We then used our IDE Read Error Injector to inject a
error within our target file. Next we entered the guest and
attempted to read the file using vi. The result is shown
in Figure 3. The snippet of the log shown here reflects a
single attempt by the guest to read from the faulty sector.
Although the remainder of the log is omitted to conserve
space, we observe that the guest makes several attempts to
read the sector before giving up and reporting an error to
the user.

5. RELATED WORK
Extensive research has been conducted on effective meth-

ods for injecting hardware faults in operating systems and
applications running on reliable hardware. These approaches
fall roughly into three categories.

Figure 3: The guest’s kernel log after a IDE read

error was injected

5.1 Hardware
One of the earliest approaches was to induce actual hard-

ware faults in the systems being tested. Several novel tech-
niques for inducing actual hardware faults have been ex-
plored. For example, [1] explored creating hardware faults
by manipulating the pin-level voltages of chips in the target
system. Additionally, in [14] the authors developed meth-
ods for injecting faults by exposing the target system to
a Californium-252 radiation source. However, as these ap-
proaches suggest, creating conditions in which an actual
hardware fault occurs is invasive, time-consuming and ex-
pensive. Other hardware-based approaches have been ex-
plored more recently. For example, in [23] the authors ex-
plored fault injection in a specialized system constructed
from a network of FPGAs. Although this approach can
potentially mimic a broad range of hardware errors, it is
limited to a computing platform that is not widely used.
Our virtualization-based approach can be used on the real
hardware that is commonly used in extreme-scale systems.

5.2 Simulation
Another approach for evaluating the fault tolerance of a

system is to use simulation. One common approach is to
specify a system using VHDL and simulate the system in
the presence of various hardware faults. In addition to being
slow, another drawback of this approach is that the evalu-
ation of a full-featured system is challenging. To overcome
these limitations, simulation has been coupled with virtual-
ization in several hybrid approaches. In these cases, virtu-
alization is used to run a guest and simulators are invoked
to model the behavior of faulty devices [15, 22]. Although
this approach has many benefits over full VHDL simulation,
writing and maintaining device simulators is a significant
undertaking.

5.3 Software
Due to the shortcomings of these two approaches, re-

cent research has focused on software techniques that are
broadly referred to as Software-implemented Fault Injec-
tion (SWIFI). In [6], errors are injected using UMLinux and
ptrace. UMLinux allows a guest operating system to be
run as a user-level Linux process. ptrace is a system call
that provides debugging features that are used by common
tools such as gdb and strace. Because ptrace has complete
access to the registers and memory of a given process, it can
create the appearance of a wide range of hardware faults.
Augmented application fault-injection, e.g., [20], takes an
application-centered approach, injecting faults such as bit-
flips into the application’s data structures. Unlike these ap-
proaches, our virtualization-based approach works with un-
modified applications and operating systems. Another ap-
proach is to use the performance monitoring and debugging
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features of the CPU [7, 13]. However, the range of faults
that can be injected are limited (e.g., corrupting memory is
difficult).

Finally, emulation and virtualization have seen limited use
in failure injection. In [8], the authors use the QEMU em-
ulator to inject logic errors into an application. Although
an emulator can potentially mimic many important classes
of hardware faults, emulators are typically exceedingly slow
and do not scale well to multi-node systems. There are sev-
eral examples of pairing virtualization with hardware simu-
lators to model the behavior of faulty devices [15, 22]. How-
ever, like emulation, simulation has similar performance and
scalability challenges. Our approach, in contrast, relies on
VMMs with proven scalability and allows meaningful and
(relatively) precise errors to be injected without requiring
full device simulation.

6. FUTURE WORK
Numerous options are available for carrying this work for-

ward. Given the relative prevalence of memory errors, our
immediate focus is on investigating the impact of memory
errors on system behavior. To this end, we are currently
implementing a fault injector that will enable us to inject
synchronous DRAM ECC errors and silent data corruption.
Coupled with the support for asynchronous DRAM ECC
that we already have, this framework will enable us to more
accurately mimic a wide range of memory errors. In par-
ticular, this allows us to explore error sensitivity across the
entire memory footprint, not just within a single application.

Additionally, we are adding support for stochastic models
for injecting errors. This will allow us to begin to experi-
ment with different models of memory failure. Specifically,
we plan to investigate techniques for incorporating system
behavior (e.g., memory access patterns) into our models of
memory failure. Our ultimate goal is to develop a model of
memory failure that more accurately represents patterns of
errors that we observe in the field.

Finally, we plan to use this framework to explore the effect
of memory errors across multiple nodes. In particular, we
are interested in examining the impact of error recovery on
overall system performance.

7. CONCLUSION
Successfully building next-generation extreme-scale sys-

tems will require innovative strategies for withstanding in-
creasingly frequent errors. In this paper, we propose a frame-
work that uses virtual unreliable hardware to mimic complex
error regimes. Virtualization allows us to mimic hardware
errors with the breadth, scalability and performance that
is required for comprehensive evaluation of fault tolerance
techniques. Additionally, this framework enables us to thor-
oughly explore the effect of hardware errors that occur on
an individual node and across the nodes of a system. To
illustrate the viability of this approach, we built two Er-
ror Injectors and demonstrated that they could be used to
virtualize Memory Scrubber errors and IDE read errors.
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